一、罗素悖论怎么解决的
1、一名理发师说,自己给城里所有自己不理发的人理发,那么他是否给自己理发?
2、现实不是科幻小说,科学发展中出现的任何理论危机都意味着我们认识的不足,也激励着一代又一代的科学家们去探索、发现。因此,我们不必追求完美的理论,相反,真理的丧失、权威的崩塌才是学科发展前所未有的良机。
3、当前主流的解悖方案是蒯因的方案。蒯因的论证过程:假设村子里有如此一位理发师。如果他要给自己理发,根据他的规则,他不给自己理发。如果他不给自己理发,根据他的规则,他要给自己理发。矛盾。因此假设不成立,如此一位理发师不存在。
4、“披萨”这个词也不是自然数,所以它是集合成员。
5、他们对于“集合”的定义非常不精确。
6、解决这一悖论主要有两种选择,ZF公理系统和NBG公理系统。策梅罗在自己这一原则基础上提出第一个公理化集合论体系,后来这一公理化集合系统很大程度上弥补了康托尔朴素集合论的缺陷。这一公理系统在通过弗兰克尔的改进后被称为ZF公理系统。
7、如果你认为数学家是在发现客观真理,那么你就不会接受维氏的分析和解决。如果你认为数学家是在发明主观理论,那么维氏的分析和解决再清楚再简单再合理不过了。
8、别忘了把“哲园”也分享给身边爱好哲学、喜欢智慧的小伙伴哦!
9、那么,如何解决罗素悖论呢?很简单,对于“R是否属于R”此无定义处进行重新定义,属于不属于都可以,或者说此处没有意义也可以,看哪种定义比较适用。数学家构造的理论出现矛盾了,就像人们讲话出现了矛盾了一样,解决的方法很简单:“对不起,我没有注意到这里有矛盾,我重新说明一下,此处应该是如此如此……”
10、在一个村子里有一位理发师,这位理发师声称:“给而且只给那些不给自己理发的人理发”。现在问理发师是否要给自己理发。如果理发师不给自己理发,那么根据定义,他要给自己理发;如果理发师给自己理发,那么根据定义,他不能给自己理发。这就是著名的“理发师悖论”。
11、“自我指涉”可导致罗素悖论。简单来说,一个命题的真或假依赖于其本身的真假,即可为自我指涉。日常交流中,我们应该避免、也没有必要说出自我指涉的话。(练习题)请用自我指涉创造罗素悖论。例:这句话是假的。希望采纳
12、相比于罗素悖论理发师悖论就更好解决了。方方抢答:“理发师是女的就解决了!”
13、本书适合中学生和大学生阅读,以及对悖论问题感兴趣的教师和科研工作者阅读。
14、了解了这个理发师的困惑,这不就是外国版的“自相矛盾”吗?其实,这个“理发师悖论”很容易解决,只需要修改一下理发师的规矩,将他自己排除在规矩之外。然而,罗素悖论是由集合论的基本原理严格推导得来,就不是那么容易解决的了。
15、华为为中国企业在世界市场的成功提供了两个重要启示:一个启示是从人的头脑中挖掘大油田、大森林、大煤矿。所以任正非说,“资源会枯竭,惟有文化才会生生不息,一切工业产品都是人的智慧创造的。华为没有可以依存的自然资源,惟有在人的头脑中挖掘……”所以华为坚持“销售收入的10%拨付研发经费,必要时可能还要加大拨付的比例”。
16、关于没有定义,可以展开一下。例如对于变量x没有任何定义,这是缺少定义;对于x定义为x,这是重言定义;对于x定义为(x=0ifx=1andx=1ifx=0),这是矛盾定义。这三种定义,都没有给出正确的定义。
17、对于所谓的“集合”(set)是什么,我们感到有些模糊。
18、而这小小的矛盾带来了“灾难”
19、——布特鲁(PierreBoutroux)
20、因此,互联网时代企业的生存之道就是很简单了:用互联网降低企业的外部交易成本;同时,用互联网和科学管理降低企业内部交易成本。这个就是互联网企业生存之道。我们也不要去搞那么多互联网思维,所有的争论最终回归到一个问题,是谁替代谁的问题。
二、罗素悖论是什么
1、德国逻辑学家弗雷格(Frege)曾在自己的著作中写道:“一个科学家所碰到的最倒霉的事,莫过于是在他的工作即将完成的时候却发现所干的工作的基础都崩溃了。”作为逻辑结构,数学已经处于一种悲惨的境地,数学家们以向往的心情回顾这些矛盾被认识以前的美好时代。(Kline,1972)
2、意思就是,当罗素集合是它自身的成员时,它就不是自身的成员;当它不是自身成员时,它就又是自身的成员了……它就像尴尬的小丑乔治,在宴会的门口进退两难,不知所措。
3、就像任总讲的,华为有一个清晰的聚焦的战略,同时有一个基本合理价值评价、价值分配体系,如果再建立起一个高效、灵活、低成本的管理运作体系,那么,摆在华为面前的路只有一条了,除了成功无路可走。
4、当然,他也可以选择不给自己理发,就看他高兴呗。
5、尽管有这些限制,现代集合论的诸种公理,仍然足够灵活,结合形式逻辑的规则,它们基本上为整个现代数学提供了坚实的基础。
6、店里的Tony老师很叛逆规定“只帮不给自己刮脸的人刮脸”这不禁引起方方的思考他只帮不给自己刮脸的人刮脸那么他可以给自己刮脸吗?Tony给自己刮脸就违背了原本规定可不给自己刮脸又不符合规定两种假设都与规定相矛盾
7、认识到与世界最佳实践还存在较大差距
8、理科少年周彦:围棋4段、会写代码,却说自己像榴莲?老凡尔赛了!
9、所以,这是一个伪问题。
10、(1)如果A包括其自身,那么很好!A会满足“成为A的一个成员”的条件——包括其自身/自含。
11、二是华为公司的运营管理与业界最佳实践还存在较大差距,已经成为制约公司市场竞争力提升的短板;
12、罗素悖论之所以称为是悖论,是因为它违反了形式逻辑中的矛盾律:矛盾律又称不矛盾律。它通常被表述为A不是非A,或A不能既是B又不是B。要求在同一思维过程中,对同一对象不能同时作出两个矛盾的判断,即不能既肯定它,又否定它。在传统逻辑里 ,矛盾律首先是作为事物规律提出来的,意为任一事物不能同时既具有某属性又不具有某属性。它作为思维规律,则是任一命题不能既真又不真。在罗素悖论中,罗素集R既属于自身又不属于自身,便是违反了矛盾律。
13、最近,人大附中的高中数学老师李永乐发布了自己关于数学和物理的一些基础科普视频,并且在网络大红。在一期关于《第三次数学危机》的节目中,李老师讲到了数理逻辑领域的《罗素悖论》并将罗素悖论跟大数学家康托尔的集合论联系在一起。其实罗素悖论根本不是针对康托尔,而是弗雷格,李永乐老师你搞错了!
14、(2)“所有集合的集合”(注:此集合自身也是一个集合,所以它包括其自身)。
15、解铃还需系铃人,为了保住先辈们历尽千辛万苦铸成的数学大厦,罗素也想了很多办法来解决自己提出的罗素悖论。
16、(2)如果B不包括其自身,它将满足条件,成为它自己的成员之一;所以,B将必须包括其自身!
17、当然,通俗不意味着浅显,悖论是个大题目,也是难题。首先,悖论品种繁多:书中所涉,就有罗素悖论及其通俗版本理发师悖论、说谎者悖论、格雷林悖论、贝里悖论、理查德悖论等,还有一些它们的变形。其次,悖论涉及面广:上面这些,就涉及集合、可定义性、自指、真假等等概念,横跨逻辑、语言、数学和哲学等学科。最后,也是最要紧的,悖论是古来的难题,耗费了无数智者的心血,但是,其实质为何,解法如何,至今仍然悬而未决。这本书的核心,就落实在悖论的实质和解法上,其方法之简洁独到,令人耳目一新之余,竟或有意外之感。所以,这本书也是一项严肃的学术探讨,深入浅出,独具一格。
18、罗素悖论是无解的吗?罗素:大家莫慌!
19、而1901年,罗素提出了一个著名的悖论,产生了爆炸性的效果,因为这个悖论植根于集合论,一经提出,相当于从根本上否定了集合论的完备性。
20、罗素经过了弗雷格的一番点拨,发现罗素悖论产生的根源在于集合的定义。按康托尔的说法,任何具有一定性质的事物的类都可以构成集合,正是这种概括导致了罗素悖论,因为它所允许存在的“集合”太宽泛了。
三、罗素悖论的本质
1、其实产生这种命题的原因归根结底就是自然语言自身的缺陷。
2、一个悖论引发一场数学危机
3、在谈罗素悖论之前,我们需要先提到另一个数学家——康托尔。在《这群酒店客人中出了幽灵》的猫粮里,我们讲到了这位伟大数学家的学术成就。
4、十位精英擅长的是什么呢?就是数据分析。他们在战术上运用统计学,运用运筹学为美国的陆军航空队计算他的飞机,计算他的驾驶员,计算他的布局,计算他的炮弹等等。每一场战役,如果统计学上不能赢,这个仗是不会去打。这不像德国军队,不像共产d军队,我们不用统计学,我们是靠激动灵活的战略战术。美国人是靠统计学来打仗。
5、理发师悖论与罗素悖论是等价的:
6、所以,我可以定义“不是自然数的‘所有实数’的集合”(thesetofallrealnumbersthatarenotnaturalnumbers),但是我不能制造一个“不是自然数的‘所有东西’的集合”(asetof"everything"thatisnotanaturalnumber)。
7、《悖论的消解》对悖论的由来和机理做了深入的分析。本书的重点是揭示说谎者悖论推理中的一个隐蔽的假设,从而给出说谎者悖论的消解。在此之前,作为一般原理,本书指出了悖论与反证法的区别和联系,并以理发师悖论为例详细说明了二者的关系。本书还给出了贝里悖论等几个悖论的解答。
8、比如,数学的发展就曾面临过几次极其严峻的考验。距离目前最近的一次,就是20世纪罗素悖论对康托尔集合论的冲击(也称第三次数学危机)。
9、有的猴子学会了使用工具,就唠唠叨叨告诉其他猴子使用方法。
10、但是放到上帝身上大家就没心思琢磨语言本身了,因为上帝这个概念才更吸引眼球,所以这么一个找抽的问题才被美其名曰为“悖论”了。
11、因为人家就是那么定义的,咱非要问两个不同的定义是否可以相同,这不是找抽吗?
12、管理不断面临的矛盾和悖论
13、时间:2013年11月25日
14、爱因斯坦说:“我们面对的重大问题无法在我们制造出这些问题的思考层次上解决。”
15、一个关于变量的有限聚集,比如x、y、z,应该是一个集合。
16、于是我们就可以把所有的集合分为两类:包括自己的集合和不包括自己的集合。
17、理发师悖论是罗素悖论的通俗版,其矛盾点在于:规定中的Tony“只帮不给自己刮脸的人”的这个集合无法建立,因为无法确定理发师本人能否在这个集合内。
18、尽管如此,经过十几年的变革,尽管有了很大的变革,华为与业界最佳实践还存在很大的差距。为此任正非提出,华为在未来的五年里规模上要再翻一番,在规模翻一番的目标下,还要达到人员不显著增加、营运资本不显著增加。所以,我们说华为的管理仍然面临巨大的挑战。主要在以下几个方面:
19、理发师悖论与罗素悖论是等价的:如果把每个人看成一个集合,这个集合的元素被定义成这个人刮脸的对象。那么,理发师宣称,他的元素,都是城里不属于自身的那些集合,并且城里所有不属于自身的集合都属于他。那么他是否属于他自己?这样就由理发师悖论得到了罗素悖论。反过来的变换也是成立的。
20、如果他不给自己刮脸,他就属于“不给自己刮脸的人”,他就要给自己刮脸,而如果他给自己刮脸呢?他又属于“给自己刮脸的人”,他就不该给自己刮脸。
四、罗素悖论怎么解决的知乎
1、现在问题就来了,乔治表演完毕后,究竟有没有资格留下来参加宴会呢?如果他可以留下来参加,那么就违背了宴会的招待原则,因为宴会只招待那些“没资格在自己表演后留下来参加宴会的小丑”;而如果他被大家赶走,不能参加宴会,那么他就是典型的“没资格在自己表演后留下来参加宴会的小丑”了,他就符合参加宴会的标准,应当留下来了。那么,他到底该不该留下来?
2、于是,囚徒心想,让我完全出乎意料是吗?那他们总不能在第七天执行。因为第七天是最后一天,如果我直到第六天都活得好好的,那么我将确切知道行刑日将是最后一天,这与“我猜不到具体日期,完全出乎意料”就相矛盾了。那么第六天就变成了可能行刑的最后一天。但若在第五天没有行刑,刽子手就只剩下第六天这一个选择,囚徒又将确切知道自己将死于第六天,这又与“猜不到具体日期,完全出乎意料”相矛盾。于是第六天也被排除。以此类推,第四……每一天都能被排除。囚徒心想,法官所说的难以预料的行刑日根本是不存在的,看来自己能顺利活下去了。然而,星期二中午,囚徒被押往刑场——这个结果对他来说非常出乎意料。
3、中国最丰富的资源是人力资源,是高素质的人力资源。中国企业应该把自己的优势牢牢的建立在中国的人力资源优势上,要探索出一套吸引、留住这个大规模的人力资源管理激励体系。这个是一个长期的任务,因为中国的自然资源是匮乏的,中国自然资源在世界上人均占有量几乎是属于最低的。所以,一旦我们的整个经济、整个管理、整个竞争优势转向人力资源,建立人力资源基础上,自然资源匮乏反而不重要了。
4、为了解决这个悖论,罗素认为,我们必须重新考虑集合的定义,把“集合”和“集合的集合”分开看待。如果我们把各种集合按照类型重新排列:第一类是单一元素组成的集合,第二类是以一类集合为元素的集合,第三类是以二类集合为元素的集合……以此类推,我们不能把隶属不同类的元素混为一谈,在同一类型的集合中的各种运算才有意义。
5、现代集合论的诸种公理,非常具体地规定了如何建立“其他集合的集合”(setsofothersets)。
6、我们称这个集合为“B”。
7、许多卓越的数学家深为这新的理论所起的作用而感动,希尔伯特(Hilbert)称“没有人能把我们从康托尔为我们创造的乐园中开除出去”。
8、一是跨领域、跨部门的端到端的主干流程的集成和结合部的贯通,仍然是目前最大的短板;
9、全书一以贯之的想法,是提炼诸种悖论共同的逻辑形式,将它们“都归结到一个隐蔽的、未经证明的存在性假设”(罗素《数理哲学导论》2006年德文版序言对作者理论的评论)。所谓“隐蔽的存在性假设”,对于罗素悖论的解决,已成老生常谈,但用它来解析“说谎者”等其他悖论,则是这本书的创见。作者将悖论定位到反证法的“掐头去尾”,继而以一种全新的“句方程”理论,还原说谎者悖论的逻辑结构,显示其所藏所隐。这个理论不但提供了这类悖论的一种轻快简明的解答,更揭示了日常语言的一种隐蔽的、前所未见的代数结构,其深层意义尚待发掘。
10、科学管理与创新并非是对立的
11、但当我们考虑A的相反项——“所有‘不’自含集合的集合”(thesetofallsetsthatdonotcontainthemselvesaselements)——悖论就出现了。
12、这个就是华为的互联网思维,这个就是华为的互联网解决之道。这个也是今天华为还在向“蓝血十杰”学习的原因。说到底,就是要在互联网时代通过科学管理,通过运用互联网进一步降低企业内部运作成本,内部交易成本,这样才能够在互联网时代生存下去。
13、所以,管理现在不断地面临这些矛盾和这些悖论。因此,互联网思维也好,创新者的窘境也好,它提出的根本问题是:企业还要不要持续的改善管理?科学管理还有没有用?未来市场和企业谁代替谁?这个问题涉及到企业和市场的关系,让我们回到罗纳德·科斯提出的两个基本问题:“如果通过企业可以消除某些成本,那为什么还会有市场交易?”反之亦然,“如果价值体系能够决定资源分配,为什么需要企业来承担建立和运转这种行政机构的成本呢?
14、维特根斯坦反复强调:“数学家不是发现者,而是发明者。”,又说“数学家一直在发明新的描述形式。有的人受实际需要的刺激,另一些人出自审美需要,还有些人以其他种种方式。”
15、实际应用中,我们同样可以通过规定来规避他,但是,他揭示了一个至关重要的问题,那就是康托尔集合论的不完备性。
16、华为提出“5个1”目标
17、比如,自然数集,再比如,所有的未成年人,等等。这个假设看起来很容易使人信服,但这种不受任何限制的建构集合的方式,就出现了问题。
18、转个发,薛饿也变不成十万加
19、学术的说法,叫违反了逻辑的同一律原则,通俗的说法就叫自己打脸。
20、搬运翻译工:Suhrawardi(剑桥大学神学博士)
五、罗素悖论的思考
1、数学家的工作与纯逻辑家的工作不同,他们并不只是进行分析与推理,更重要的是进行综合与创造,欧氏几何与非欧氏几何的公理都是综合与创造。当数学家在概念框架内推演定理,他们是在进行分析与推理,这时候比较接近于“发现”。当数学家在给出定义、公理与概念框架的时候,他们是在综合与创造,这时候比较适用于“发明”。
2、人群散了后夜色多朦胧月光也会跟着我
3、“蓝血十杰”对于现代企业管理的主要贡献是什么?
4、如果集合A不是自己的元素,那么集合A就满足“不包括自己的集合”的定义,应该是此集合的元素之矛盾。
5、(简言之,如果B自含,则B将不属于B,则B将不自含,矛盾;如果B不自含,则B将属于B,则B将自含,矛盾。)
6、让我们首先考虑,“所有自含集合的集合”(thesetofallsetsthatcontainthemselvesaselements),称之为“A”。
7、语言中存在着很多概念的应用与其定义矛盾的情况,如果是计算机语言遇到这种问题会提示错误,日常语言中的这种错误有时候就成了悖论,只能人肉提示错误。
8、中国企业向哪里寻找新优势?
9、文兰先生的近著《悖论的消解》(科学出版社,2018年1月),题目直接点明其主题。作者删繁就简,仅用六十几页的篇幅,不但梳理了几种典型的悖论,而且论述了一种新的解悖观点。全书纲目明晰、层次井然,加之文字清新、简易亲切,把繁复的悖论“从数学技术细节中解放出来”(哥德尔评罗素悖论语),让非专业的读者,包括中学生,即能领会其中奥妙。所以,这本书首先是一部生动的通俗读本,面向大众,趣味盎然。
10、我认为基于数据和事实的理性分析和决策,本质上是一种批判性思维,这事一种客观的、公正的、态度谦逊的和不带成见的思维方式。批判思维是创造性思维的出发点,没有批判就没有创造;科学管理与创新并非是对立的,二者遵循的是同样的思维规律;科学管理帮助创新发现问题,为创新奠定商业化成功的基础。
11、一个函项不能成为它自身的主目,因为函项的标记已经包含着它自身的主目的原型,而且它不能包含自身。比如说,如果我们假设函项F(fx)可以成为它自身的主目,那么这时就会有一个命题“F(F(fx))”,其中的外函项F和内函项F必定有不同的指谓;因为内函项具有Φ(fx)的形式,外函项具有Ψ(Φ(fx))的形式。对于两个函项来说,只有本身不标示任何东西的字母“F”是共同的。如果我们把“F(F(u))”写成“(∃Φ):F(Φu).Φu=Fu”,这一点马上就清楚了。这样罗素的悖论就消除了。
12、庄朝晖,关于对角线方法和停机问题的评论,第五届两岸逻辑教学与研究学术会议,重庆西南大学,2012年4月.
13、(1)“不是自然数的所有东西的集合”(注:这个巨大的集合包括“披萨”、“加利福尼亚州”,同时,也包括其自身,因为此集合当然也不是自然数);
14、在《数学原理》中,罗素阐释了一个集合论悖论,由于它只涉及集合论中最基础的东西,易于理解,因而在数学界广泛传播。
15、1918年,罗素把这个悖论通俗化,称为“理发师悖论”:有一位理发师,他的广告词是这样写的:“本人的理发技艺十分高超,誉满全城。我将为本城所有不给自己刮脸的人刮脸,我也只给这些人刮脸。我对各位表示热诚欢迎!”来找他刮脸的人络绎不绝,自然都是那些不给自己刮脸的人。
16、ISBN9787030552105
17、简而言之,宴会的规则预示着这样一个矛盾的现象:“小丑乔治当且仅当他没资格参加宴会的时候,才有资格参加宴会”。这就是一个悖论。
18、但对这个看似合理的问题的回答却会陷入两难境地。如果s属于S,根据S的定义,s就不属于S;反之,如果s不属于S,同样根据定义,s就属于S。无论如何都是矛盾的。人们希望能够通过对康托尔的集合论进行改造,通过对集合定义加以限制来排除悖论,这就需要建立新的原则。这些原则必须足够狭窄,以保证排除一切矛盾;另一方面又必须充分广阔,使康托尔集合论中一切有价值的内容得以保存下来。
19、有人说你这没有解决悖论啊,你只是规定不让人家说而已?
20、作者:AndyKiersz(seniorquantreporteratBusinessInsider,曾在芝加哥大学和普渡大学研究数学)
四海网收集整理一些常用的php代码,JS代码,网络文章,网络昵称等技术文章。