这篇文章主要为大家详细介绍了python微博爬虫实例,具有一定的参考价值,可以用来参考一下。
感兴趣python微博爬虫实例的小伙伴,下面一起跟随四海网的小编罗X来看看吧。
最近也想趴下新浪微博上边的一些数据,在这里主要爬去的是一个人的粉丝具体信息(微博昵称,个人介绍,地址,通过什么方式进行关注),所以就学以致用,通过python来爬去微博上边的数据。
首先先说下环境啊,使用的是python3.5,然后使用的框架有:
requests:用来获取html页面。
BeautifulSoup:用来进行html的解析,是一个在python爬虫中非常好用的一个工具,并且有中文的说明文档,链接是:https://www.crummy.com/software/BeautifulSoup/bs4/doc/index.zh.html。可以看其中具体的一些函数的使用的方法。
通过这两个,则就可以实现我们想要实现的功能了。
然后第二步,则是我们需要模拟微博进行登录,因为你会发现,如果你不登录,是无法看一个人的具体的粉丝信息的,因此我们需要自己登录下新浪微博,然后通过调试工具,把cookie复制出来,这样才能够进行爬虫。,怎么获取cookie,在这进行一个简单的介绍,登陆后看到个人主页后,打开开发者工具,然后选择network:
然后复制下这个cookie,在爬虫中需要用到,接下来就上代码了:
主程序类代码:
import requests
from html.parser import HTMLParser
import person
from bs4 import BeautifulSoup
import json
#获取的cookie值存放在这
myHeader = {"Cookie":"SINAGLOBAL=1151648924265.729.1510207774298; YF-V5-G0=a9b587b1791ab233f24db4e09dad383c; login_sid_t=663888f6033b6f4a8f5fa48b26d9eb17; YF-Ugrow-G0=ea90f703b7694b74b62d38420b5273df; _s_tentry=passport.weibo.com; Apache=9283625770163.1.1512087277478; ULV=1512087277483:2:1:1:9283625770163.1.1512087277478:1510207774304; SSOLoginState=1512087292; wvr=6; YF-Page-G0=451b3eb7a5a4008f8b81de1fcc8cf90e; cross_origin_proto=SSL; WBStorage=82ca67f06fa80da0|undefined; crossidccode=CODE-gz-1ElEPq-16RrfZ-qpysbLqGTWJetzH095150; SCF=AnQFFpBKBne2YCQtu52G1zEuEpkY1WI_QdgCdIs-ANt1_wzGQ0_VgvzYW7PLnswMwwJgI9T3YeRDGsWhfOwoLBs.; SUB=_2A253IOm1DeThGeNG6lsU-CjOzTWIHXVUVFx9rDV8PUNbmtBeLWTSkW9NS2IjRFgpnHs1R3f_H3nB67BbC--9b_Hb; SUBP=0033WrSXqPxfM725Ws9jqgMF55529P9D9W5fUsSPaZjP3cB4EXR8M3gT5JpX5KzhUgL.Fo-ReK.f1hqESo.2dJLoIEXLxK.L1hzLBKeLxK-LBo.LBoBLxKML1-zL1-zLxK-LBKBL12qLxK-L1K-L122t; SUHB=0wnlry4ys0tunb; ALF=1543884132; wb_cusLike_5819586269=N; UOR=,,login.sina.com.cn"}
#要爬去的账号的粉丝列表页面的地址<br>r = requests.get('https://weibo.com/p/1005051678105910/follow?relate=fans&from=100505&wvr=6&mod=headfans¤t=fans#place',headers=myHeader)
f = open("test.html", "w", encoding="UTF-8")
parser = HTMLParser()
parser.feed(r.text)
htmlStr = r.text
# 通过script来切割后边的几个通过js来显示的json数组,通过观看源代码
fansStr = htmlStr.split("</script>")
#因为在测试的时候,发现微博每一次返回的dom的顺序不一样,粉丝列表的dom和一个其他内容的dom的位置一直交替,所以在这加了一个判断
tmpJson = fansStr[-2][17:-1] if fansStr[-2][17:-1].__len__()>fansStr[-3][17:-1].__len__() else fansStr[-3][17:-1]
dict = json.loads(tmpJson)
soup = BeautifulSoup(dict['html'], 'html')
soup.prettify()
f.write(soup.prettify())
for divTag in soup.find_all('div'):
if divTag['class'] == ["follow_inner"]:
followTag = divTag
if locals().get("followTag"):
for personTag in followTag.find_all('dl'):
p = person.person(personTag)
print(p.__dict__)
person类代码:
在这中间进行主要的解析
from bs4 import BeautifulSoup<br><br>#具体解析在这
class person(object):
def __init__(self, personTag = None):
self.analysis(personTag)
def analysis(self,personTag):
self.analysisName(personTag)
self.analysisFollowAndFansNumber(personTag)
self.analysisCity(personTag)
self.analysisIntroduce(personTag)
self.analysisFollowWay(personTag)
self.analysisID(personTag)
def analysisName(self,personTag):
self.name = personTag.div.a.string
def analysisFollowAndFansNumber(self,personTag):
for divTag in personTag.find_all('div'):
if divTag['class'] == ["info_connect"]:
infoTag = divTag
if locals().get("infoTag"):
self.followNumber = infoTag.find_all('span')[0].em.string
self.fansNumber = infoTag.find_all('span')[1].em.a.string
self.assay = infoTag.find_all('span')[2].em.a.string
def analysisCity(self,personTag):
for divTag in personTag.find_all('div'):
if divTag['class'] == ['info_add']:
addressTag = divTag
if locals().get('addressTag'):
self.address = addressTag.span.string
def analysisIntroduce(self,personTag):
for divTag in personTag.find_all('div'):
if divTag['class'] == ['info_intro']:
introduceTag = divTag
if locals().get('introduceTag'):
self.introduce = introduceTag.span.string
def analysisFollowWay(self,personTag):
for divTag in personTag.find_all('div'):
if divTag['class'] == ['info_from']:
fromTag = divTag
if locals().get('fromTag'):
self.fromInfo = fromTag.a.string
def analysisID(self,personTag):
personRel = personTag.dt.a['href']
self.id = personRel[personRel.find('=')+1:-5]+personRel[3:personRel.find('?')]
其实这个相对还是比较简单的,主要比较麻烦的是需要看新浪的html的源代码,需要了解其显示的规律,然后使用beautiful soup进行解析节点,获取数据。本文来自:http://www.q1010.com/181/2935-0.html
注:关于python微博爬虫实例的内容就先介绍到这里,更多相关文章的可以留意四海网的其他信息。
关键词:爬虫
四海网收集整理一些常用的php代码,JS代码,数据库mysql等技术文章。