这篇文章主要为大家详细介绍了SQL Server group by 的用法解析,具有一定的参考价值,可以用来参考一下。
感兴趣的小伙伴,下面一起跟随四海网的小编两巴掌来看看吧!
今天用实例总结一下group by的用法。
归纳一下:group by:ALL ,Cube,RollUP,Compute,Compute by
创建数据脚本
Create Table SalesInfo
(Ctiy nvarchar(50),
OrderDate datetime,
OrderID int
)
insert into SalesInfo
select N'北京','2014-06-09',1001
union all
select N'北京','2014-08-09',1002
union all
select N'北京','2013-10-09',1009
union all
select N'大连','2013-08-09',4001
union all
select N'大连','2013-10-09',4002
union all
select N'大连','2013-05-12',4003
union all
select N'大连','2014-11-11',4004
union all
select N'大连','2014-12-11',4005
首先执行以下脚本:
select Ctiy,count(OrderID) as OrderCount
from
SalesInfo
group by Ctiy
with cube
【图片暂缺】
可以看到多出了一行 是对所有的订单数的汇总
下一个脚本:
select Ctiy,Year(OrderDate) as OrderYear,count(OrderID) as OrderCount
from
SalesInfo
group by Ctiy,Year(OrderDate)
with cube
【图片暂缺】
可以看出来对分组中的维度都进行了汇总,并且还有一个订单的总和
下一个脚本(注意出现了rollup):
select Ctiy,Year(OrderDate) as OrderYear,count(OrderID) as OrderCount
from
SalesInfo
group by Ctiy,Year(OrderDate)
with rollup
【图片暂缺】
使用rollup会对group by列出的第一个分组字段进行汇总运算
下一个脚本:
select Ctiy,count(OrderID) as OrderCount
from
SalesInfo
where
Ctiy = N'大连'
group by all Ctiy
我们会看到 使用group by all 后,不符合条件的城市也会出现,只是订单数是零
需要注意的是 All 不能和 cube 和 rollup一起使用,和having一起使用的话,All的功能会失效.
下一个脚本:
select Ctiy,orderdate,orderid
from
SalesInfo
compute count(orderid)
【图片暂缺】
显示了两个结果集,一个是订单结果集,一个是订单总数结果集
最后一个脚本:
select Ctiy,orderdate,orderid
from
SalesInfo
order by Ctiy
compute count(orderid) by Ctiy
【图片暂缺】
按照不同的城市,分别显示该城市的订单信息,一个显示该城市的所有订单数量
就先说这些了.
本文来自:http://www.q1010.com/179/8901-0.html
注:关于SQL Server group by 的用法解析的内容就先介绍到这里,更多相关文章的可以留意四海网的其他信息。
关键词:SQL SERVER
四海网收集整理一些常用的php代码,JS代码,数据库mysql等技术文章。