这篇文章主要为大家详细介绍了MySQL Binlog 日志处理工具对比的简单示例,具有一定的参考价值,可以用来参考一下。
感兴趣的小伙伴,下面一起跟随四海网的小玲来看看吧!
定位:基于数据库增量日志解析,提供增量数据订阅&消费,目前主要支持了mysql。
原理:
整个parser过程大致可分为几步:
canal 由Java开发,分为服务端和客户端,拥有众多的衍生应用,性能稳定,功能强大;canal 需要自己编写客户端来消费canal解析到的数据。
maxwell相对于canal的优势是使用简单,它直接将数据变更输出为json字符串,不需要再编写客户端。
Databus是一种低延迟变化捕获系统,已成为LinkedIn数据处理管道不可或缺的一部分。Databus解决了可靠捕获,流动和处理主要数据更改的基本要求。Databus提供以下功能:
数据传输服务(Data Transmission Service,简称DTS)是阿里云提供的一种支持 RDBMS(关系型数据库)、NoSQL、OLAP 等多种数据源之间数据交互的数据流服务。DTS提供了数据迁移、实时数据订阅及数据实时同步等多种数据传输能力,可实现不停服数据迁移、数据异地灾备、异地多活(单元化)、跨境数据同步、实时数据仓库、查询报表分流、缓存更新、异步消息通知等多种业务应用场景,助您构建高安全、可扩展、高可用的数据架构。
优势:数据传输(Data Transmission)服务 DTS 支持 RDBMS、NoSQL、OLAP 等多种数据源间的数据传输。它提供了数据迁移、实时数据订阅及数据实时同步等多种数据传输方式。相对于第三方数据流工具,数据传输服务 DTS 提供更丰富多样、高性能、高安全可靠的传输链路,同时它提供了诸多便利功能,极大得方便了传输链路的创建及管理。
个人理解:就是一个消息队列,会给你推送它包装过的sql对象,可以自己做个服务去解析这些sql对象。
免去部署维护的昂贵使用成本。DTS针对阿里云RDS(在线关系型数据库)、DRDS等产品进行了适配,解决了Binlog日志回收,主备切换、VPC网络切换等场景下的订阅高可用问题。同时,针对RDS进行了针对性的性能优化。出于稳定性、性能及成本的考虑,推荐使用。
以上就是MySQL Binlog 日志处理工具对比分析的详细内容,更多关于MySQL Binlog 日志处理工具的资料请关注四海网其它相关文章!
本文来自:http://www.q1010.com/177/19282-0.html
注:关于MySQL Binlog 日志处理工具对比的简单示例的内容就先介绍到这里,更多相关文章的可以留意四海网的其他信息。
关键词:
四海网收集整理一些常用的php代码,JS代码,数据库mysql等技术文章。